Tag Archive | difuzija

Школа дијализе (III део) – Принципи дијализе

БИОФИЗИЧКИ ПРИНЦИПИ  ХЕМОДИЈАЛИЗЕ

Циљ лечења дијализом јесте заменити и надокнадити изгубљене екскреторне функције бубрега. Уместо на природан начин, вештачким путем одстранити вишак течности и непожељне супстанце из организма.

Током поступка хемодијализе, крв пацијента циркулише изван организма, кроз неку врсту вештачког бубрега, а то је дијализатор.

У суштини, дијализатор садржи две коморе, одвојене мембраном: кроз једну комору протиче крв, а кроз другу, посебна, дијализна, течност.

Мембрана је семипермеабилна, тако да омогућује пролазак воде и растворених супстанци, до одређене величине.

Ова вантелесна циркулација је контролисана апаратом за хемодијализу, који такође, справља (припрема) дијализну течност.

На почетку процедуре крв болесника која улази у дијализатор, садржи вишак воде и распадних продуката метаболизма.

Да би се уклонио вишак течности, створи се разлика (градијент) у величини притисака са једне, у односу на другу страну мембране.

Ова разлика у притисцима, повлачи воду из крви, кроз мембрану, да улази у дијализну течност, – процесом ултрафилтрације.

Количина течности која ће бити ултрафилтрирана током једне процедуре, треба да одговара вишку телесне воде.

Обзиром да у дијализној течности нема отпадних продуката метаболизма, створена је разлика у њиховим концентрацијама са једне, у односу на другу страну мембране. Овај градијент у концентрацији омогућава да отпадни продукти метаболизма дифузијом пређу из крви, кроз мембрану, у дијализну течност.

Коначни резултат третмана хемодијализом је корекција волумена крви и уклањање штетних материја из крви.

Ова два процеса, одстрањивање вишка течности (ултрафилтрација) и уклањање одређених супстанци (дифузија), нормално се дешавају: истовремено.

Ипак, обзиром да на ове процесе утичемо различитим механизмима, они се описују одвојено.

УКЛАЊАЊЕ  ТЕЧНОСТИ

Да би се из крви одстранио вишак течности ултрафилтрацијом, неопходна је разлика у притисцима на странама мембране.

У крвном одељку дијализатора притисак је позитиван и створен је радом крвне пумпе.

У одељку дијализне течности притисак је обично негативан, а настаје радом сукцијске пумпе у апарату за дијализу.

Тако настали градијент (разлика) у хидростатским притисцима, са једне на другу страну мембране, назива се трансмембрански притисак, ТМП, и уобичајено се изражава у mmHg.

Потребно је још једном истаћи да ТМП није притисак, него, разлика у притисцима.

ТМП се може израчунати као разлика између притиска у крвном одељку дијализатора (PB) и притиска у одељку дијализне течности (PD):

TMP =  PB– PD

У већини случајева, притисак у одељку дијализне течности, PD, је негативан.

У том случају, ТМП се може изразити као збир PB и PD, са позитивним предзнаком.

Ова фразлика (градијент) у притисцима је покретачка сила за транспорт течности кроз мембрану, процес познат као ултрафилтрација.

Течност се креће са подручја са вишим, ка подручју са нижим притиском, тј. из крви у дијализну течност.

Стопа ултрафилтрације, тј. количина течности уклоњена у јединици времена, зависи од два чиниоца: градијента притисака на мембрани (TMP) и пропусности (пермеабилности) мембране за воду.

Када се процењује укупни градијент притиска, понекад се морају узимати у обзир и осмотски притисци. Протеини плазме стварају мањи осмотски притисак, од око 20-30 mmHg, који је неопходан да задржава воду у крвним судовима. Овај притисак се означава као онкотски притисак.

Да би се постигла било каква ултрафилтрација, разлика у хидростатским притисцима, мора бити већа од онкотског притиска.

Ако су хидростатски притисци у оба одељка идентични, онда ће нето проток воде бити из дијализне течности у крв, и то због онкотског притиска.

Осмотски притисци се не могу мерити или контролисати апаратом за дијализу и обично се не узимају у обзир при рутинским хемодијализама.

Свака врста мембране има своју сопствену пропустљивост (пермеабилност).

Што је пропусност дијализне мембране за воду већа, то ће и добијена стопа ултрафилтрације бити већа, при датом  TMP-у.

Стандардне мембране за хемодијализу се називају слабо-пропусне, low-flux мембране, док се мембране које су високо-пропусне за воду означавају као high-flux мембране.

Укратко, стопа одстрањивања течности (UF rate) током хемодијализе, зависи од:

–  укупне разлике у притисцима на странама мембране у пракси означене као ТМП),

–  пропусности за воду мембране дијализатора.

УКЛАЊАЊЕ  ЧЕСТИЦА   ДИФУЗИЈОМ

У току хемодијализе супстанце се из крви уклањају углавном дифузијом.

Главна покретачка сила дифузијског транспорта честица кроз дијализну мембрану, јесте градијент (разлика) у концентрацијама тих супстанци у крви и дијализној течности.

Крвни проток (Qb) доноси штетне супстанце у дијализатор, а ток дијализне течности (Qd) их односи из дијализатора. Захваљујући оваквом непрекидном транспорту супстанци, у дијализатор и из дијализатора, дуж целе мембране се одржава велики концентрацијски градијент. Што је већи концентрацијски градијент биће и брже уклањање штетних супстанци из крви.

Крв и дијализна течност нормално теку у супротним смеровима (тзв. протуструјни ток).

То је најефикаснији начин да се постигне континуирани концентрацијски градијент дуж целог дијализатора.

Мање супстанце, са молекулском масом испод 300, као што су отпадни продукти метаболизма протеина: уреа (МТ 60) и креатинин (МТ 113), лако пролазе кроз дијализну мембрану.

Обзиром да мембрана пружа мали отпор кретању ових честица, повећање протока с обе стране мембране, директно утиче на њихове транспорте кроз мембрану.

Већи проток крви доноси већи број супстанци за размену на мембрани, а бржи проток дијализне течности ће исте те супстанце, кад пређу на дијализатну страну, брже и однети.

Очигледно, степен уклањања малих супстанци углавном зависи од протока. Што је супстанца мања, утицај протока на њено уклањање  је већи.

Веће супстанце не дифундују кроз мембрану тако лако.

Обзиром да је главни отпор транспорту ових молекула у самој мембрани, повећање протока има мали ефекат.

Зато се каже да је уклањање већих супстанци зависно од мембране. Што је супстанца већа, то је већи утицај мембране на њено уклањање. Генерално се говорило, да што је мембрана тања, то је њен отпор кретању честица мањи.

На крају, можемо рећи да је уклањање супстанци дифузијом, зависно од:

–  брзине протока крви,

–  брзине протока дијализне течности,

–  концентрацијског градијента између крви и дијализне течности,

–  карактеристика дијализатора, као што су: врста, дебљина и површина мембране,

Дефиниција Дифузије:

Дифузија је кретање супстанци са места њихове веће, ка месту њихове мање концентрације.

РАЗМЕНА  СУПСТАНЦИ

Покретачка сила за дифузију честица кроз семипермеабилну мембрану у дијализатору, јесте разлика у концентрацијама супстанци у крви и у дијализној течности.

Супстанце се увек крећу са места где им је већа концентрација ка месту где им је концентрација мања.

Регулишући састав дијализне течности ми можемо одредити смер дифузијског транспорта, тј. одређујемо шта ћемо у крв додати, а шта из крви уклонити.

  1. Уклањање штетних супстанци

Отпадни продукти метаболизма, као што су уреа и креатинин, накупљају се у крви уремичних болесника и морају се ефикасно уклањати. Да би се постигло њихово максимално уклањање, њих онда, наравно, уопште не треба да буде у дијализној течности.

  1. Нормализација нивоа електролита

Електролити, као што су Натријум и Калијум, су  животно важне супстанце, а њихове концентрације се морају одржавати у прилично уском распону. Обзиром да је код уремичних болесника тај баланс поремећен, електролити у крви уремичара се акумулирају и треба их нормализовати.

Због тога, дијализна течност мора садржавати наведене електролите у истој оној концентрацији (или нешто нижој), каква је и у крви здравих особа. Све дотле док им је концентрација у крви већа, они ће прелазити у дијализну течност. Када се нивои електролита нормализују, дифузијски транспорт ће престати, јер су концентрације супстанци са обе стране мембране једнаке.

  1. Додавање пуфера

Концентрација (бикарбонатног) пуфера у крви је обично врло ниска у уремичних болесника, јер код њих се киселине, настале катаболизмом протеина, не могу излучивати. Да би се успоставила нормална ацидо-базна равнотежа, у крв уремичних болесника се мора додавати пуфер. Да би се постигао довољан трансфер пуфера у крв, концентрација пуфера у дијализној течности мора бити значајно виша од нормалне.

Све супстанце које су у крви уремичних болесника присутне у нормалним концентрацијама и које треба одржавати у тим концентрацијама, требале би, у идеалним условима, бити и у саставу дијализне течности, у нормалним концентрацијама. Ако енергетске материје, као што је глукоза, нису у саставу дијализне течности, оне ће се губити током хемодијализе. Тај губитак се мора надокнадити додатним уносом хране.

У закључку, може се рећи да је сврха примене дијализне течности корекција хемијског састава крви у уремичних болесника.

Да би се тај циљ остварио, састав дијализне течности мора бити што сличнији нормалном саставу крвне воде, тј. плазме без протеина.

ЕЛЕКТРОЛИТИ У ДИЈАЛИЗНОЈ ТЕЧНОСТИ

Обзиром да је састав дијализне течности главни регулатор баланса електролита, посебну пажњу треба посветити избору дијализне течности, како би она била у складу са потребама сваког пацијента.

Доле наведени електролити су обавезне компоненте дијализне течности. Додавање пуфера, у циљу корекције ацидозе, биће разматрано на страницама које следе.

Натријум (Na+), је главни катијон (позитивно наелектрисан јон) у екстрацелуларној (ванћелијској) течности, где он одржава осмотски притисак и запремину течности.

Концентрацију натријума у дијализној течности треба одржавати у нивоу његове плазматске концентрације 140-142 mmol/L, али користе се све концентрације од 135 до 150 mmol/L.

Ниска концентрација натријума у дијализној течности имаће за последицу уклањање одређене количине натријума из крви. То може довести до хиповолемије (смањења запремине крви) током хемодијализе, са хипотензијом (смањењем крвног притиска) и мишићним грчевима.

Супротно томе, висока концентрација натријума у дијализној течности обично нема за последицу проблеме са ниским крвним притиском током хемодијализе, али доводи до повећаног уноса натријума у циркулацију.

То може довести до повећаног осећаја жеђи после хемодијализе, што подстиче пацијента да конзумира више течности него што му је прописано. Последица таквог оптерећења течношћу може бити артеријска хипертензија (повишен крвни притисак), која дугорочно, представља велико оптерећење за кардиоваскуларни систем.

Калијум+) је главни катијон у интрацелуларној течности (ИЦТ), где одржава осмотски притисак и запремину. Калијум је важан за активност мишића, тј. за срчане контракције. Концентрација калијума у дијализној течности је обично 2 mmol/L.

Нагле промене концентрације калијума у крви могу изазвати поремећаје у раду срца (срчане аритмије). Пацијенти који имају такве тегобе при наведеним концентрацијама калијума, вероватно требају више калијума у дијализној течности, како би се уклањање калијума успорило.

Калцијум (Ca++) је најраспрострањенији електролит у људском организму, већином се налази у скелету у форми калцијум-фосфата. То је такође, важан електролит, нпр. за функционисање мишића и згрушавање крви.

Концентрација калцијума у дијализној течности се по традицији задржава вишом (1,75 mmol/L) у односу на концентрацију калцијума у крви. Тако настали трансфер калцијума из дијализне течности у крв, је пожељан у пацијената који имају тегобе због мањка калцијума. Ипак, обзиром да већина дијализних пацијената данас добија додатни калцијум, преко лекова везивача (хелатора) фосфата, обично калцијум-карбоната или ацетата, онда се повећава ризик настајања хиперкалцемије (повишења концентрације калцијума у крви). Отуда данашњи тренд ка нижим концентрацијама калцијума у дијализној течности (1,00 до 1,25 mmol/L).

Магнезијум (Мg++) има улоге сличне калцијумским. Око 50% магнезијума је у костном ткиву. Концентрацијума магнезијума у дијализној течности се обично подешава на око 0,5 mmol/L.

Хлорид (Cl) је главни анијон (негативни јон) у дијализној течности. Он је неопходан да одржи равнотежу према наелектрисању позитивних јона, чинећи тако раствор дијализне течности електронеутралним.

 ПУФЕРИ  У  ДИЈАЛИЗНОЈ  ТЕЧНОСТИ

Киселине које се метаболизмом стварају у људском организму, неутралишу се различитим пуферским системима, међу којима је бикарбонатни (HCO3) најважнији. Да би се пуферски капацитет организма одржао, бикарбонати се стално обнављају, а тај процес се одвија у бубрезима.

У болесника са потпуном бубрежном инсуфицијенцијом, уместо напред наведеног начина, пуфер се обезбеђује преко течности за хемодијализу.

Концентрација пуфера у дијализној течности се подешава тако да се постигне нормална концентрација бикарбоната у серуму од 24-27 mmol/L на крају хемодијализе.

Бикарбонат је физиолошки пуфер у крви, и он се користи и у дијализној течности, јер се показало да је клинички супериоран у односу на све друге тестиране супстанце.

Други значајан проблем, била је микробиолошка исправност дијализне течности, обзиром да је бикарбонатни раствор одлична подлога за раст бактерија.

Због свега тога, раније је у већини дијализних центара бикарбонат годинама био замењиван у дијализној течности – ацетатом.

Ацетат, као такав, није физиолошки пуфер, али се његовим метаболисањем у организму ствара бикарбонат. Од суштинског је значаја за пацијента, да има добар јетрени капацитет за метаболисање ацетата, јер накупљање ацетата може довести до пада крвног притиска и мучнине.

Предности ацетата у пракси су, то што се може додавати у дијализни концентрат заједно са осталим електролитима, без бојазни од преципитирања, или ризика од пораста бактерија. Ово, уз нижу цену ацетатне хемодијализе, су разлози зашто се она још и данас практикује у неким центрима и клиникама.

Осамдесетих година, проблеми са бикарбонатом, у пракси су решени аутоматизацијом и опремом која омогућава хигијенску исправност дијализне течности. Да би се избегла преципитација користе се два одвојена дијализна концентрата: један са бикарбонатом и други, са свим осталим компонентама. Концентрати су одвојени све до разређења и тако се предупређује таложење калцијум-карбоната.

Од посебног је значаја била употреба бикарбоната у третману пацијента који су слабо толерисали ацетатну хемодијализу, нпр. при акутним хемодијализама  или када се радило о дијализирању деце, дијабетичара и болесника са кардиоваскуларним обољењима.

Концентрација бикарбоната у дијализној течности је обично око 34 mmol/L.

УКЛАЊАЊЕ  ЧЕСТИЦА  КОНВЕКЦИЈОМ

Дифузија јесте главни механизам транспорта супстанци током хемодијализе, али није и једини. Супстанце, такође, могу бити транспортоване у ултрафилтрираној течности, феноменом познатим као конвекција.

Све супстанце које могу проћи кроз поре на мембрани, бивају повучене кроз мембрану, у струји течности.

Јачина конвективног транспорта зависи, дакле, од волумена ултрафилтрације и од пропустљивости мембране за супстанце.

У току стандардне хемодијализе, конвективни транспорт честица је обично мали, јер је и волумен ултрафилтрације ограничен, а и стандардне мембране нису нарочито пропустљиве за крупније супстанце.

И количина малих супстанци у ултрафилтратној течности је занемарљива, у односу на количину која се уклони дифузијом. Ипак, у одсуству концентрацијског гадијента и тај допринос може бити важан.

Пример за то је уклањање натријума конвекцијом, када су концентрације натријума у серуму и у дијализној течности изједначене.

За крупније супстанце (МТ 5-10 000),  већина дијализних мембрана, представља баријеру, пропуштајући супстанце селективно, на основу величине истих. Тако да је концентрација честица у ултрафилтрираној течности значајно мања него у плазми, чак може бити смањена до нуле.

Преусмерење на пропустљивије дијализне мембране, тзв. високо-пропусне (high-flux) мембране, повећава конвективни транспорт, на два начина.

Прво, волумен ултрафилтрације је већи, јер су те мембране пропустљивије за воду.

Друго, поре на овим мембранама су шире, па оне обично пропуштају веће супстанце.

Да би се обезбедило тачно уклањање планиране запремине течности, дијализатори са  високо-пропусним мембранама, се морају користити на дијализним апаратима са прецизном, волуметријском контролом уклањања течности.

На high-flux мембранама, појављује се и феномен звани  backfiltration, тј. „повратна филтрација“ („обрнута филтрација“), која, између осталог, повећава клиренс (уклањање) супстанци конвекцијом.

Када се ултрафилтрација повећава преко пожељног и планираног губитка тежине, онда тај прекомерни волумен мора бити надокнађен неким интравенским инфузијским раствором. Тада се стандардна хемодијализа претвара у један други терапијски модалитет, звани хемодијафилтрација, ХДФ, током које обе врсте транспорта, и дифузијски и конвективни, имају значајну улогу.

Појачавајући даље ултрафилтрацију, долазимо до хемофилтрације, а то је терапијски модалитет, где се супстанце уклањају искључиво конвективним транспортом, тј. не користи се дијализна течност.

На крају, као закључак, треба рећи, да уклањање супстанци конвекцијом, током хемодијализе, зависи од:

–  величине ултрафилтрације

–  пропусних карактеристика мембране.

Дефиниција конвекције:

Конвекција је кретање супстанци са кретањем течности.

КЛИРЕНС

Са теоретским концептом клиренса смо се упознали у првом поглављу ове школе ХД.  Тада је речено да клиренс означава ефикасност бубрега у чишћењу крви од неке супстанце.

На исти начин се појам клиренса користи и за описивање капацитета дијализатора у чишћењу крви од штетних супстанци.

Подсетимо се дефиниције клиренса:

Клиренс (К), неке супстанце, је запремина крви, која је потпуно очишћена од те супстанце, у јединици времена (обично: ml/min.).

К = стопа излучивања /  концентрација у крви

Како ову дефиницију применити на дијализу?

Узмимо за пример неки дијализатор који има клиренс уреје 170 мл/мин при протоку крви од 200 мл/мин.

То значи да од 200 мл крви која протиче кроз тај дијализатор сваког минута, 170 мл  крви је потпуно очишћено од уреје, а 30 мл те крви има исту концентрацију уреје као и крв која улази у дијализатор.

У стварности, преостала уреја је, наравно, равномерно распоређна у крви која излази из дијализатора, али теоретски начин гледања на крв као на две одвојене струје, поједностављује овај концепт.

Како ми можемо измерити клиренс током дијализе?

Мерењем разлике између концентрација исте супстанце, на улазу и на излазу из дијализатора, може се израчунати стопа елиминације те супстанце дијализатором:

Стопа елиминације = улазна конц.супстанце – излазна конц.супстанце = Qbin x Cbin – Qbout x Cbout 

(улазни проток крви x улазна конц.супстанце проток крви на излазу x излазна конц.супстанце)

Тако да је комплетна формула клиренса:   К = (Qbin x Cbin – Qbout x Cbout) / Cbin   

Клиренс је у току дијализе лако измерити, када је величина ултрафилтрације: нула.

У таквим условима проток крви на улазу и проток крви на излазу из дијализатора, су идентични. Тада се формула за израчунавање клиренса може поједноставити на:

К = [Qbin x (Cbin – Cbout)] / Cbin

Тако, за мерење клиренса дијализатора за неку супстанцу, нпр. креатинин, требамо знати само проток крви и концентрацију креатинина у крви пре и после дијализатора.

Проток крви можемо очитати са екрана апарата за хемодијализу (подразумева се да крвна пумпа буде добро калибрисана).

Концентрација креатинина се одређује лабораторијски, из узорака крви узеих из артеријске и венске линије, тј. пре и после дијализатора.

Пример: При протоку крви од 200 мл/мин, и ултрафилтрацији: нула, измерена концентрација креатинина пре и после дијализатора је била: 0,980 mmol/L, и 0,343 mmol/L. Израчунај клиренс креатинина за тај дијализатор, користећи горе наведену формулу:

К =  [200 ml/min  x (0,980 –0,343 mmol/ml)]/0,980 mmol/ml                 K = 130 ml/min.

СВИ  ПАРАМЕТРИ  ХЕМОДИЈАЛИЗЕ

Да би третман хемодијализом био ефикасан, мора се остварити уклањање и вишка течности и штетних супстанци из крви пацијента.

Ова два процеса се контролишу преко различитих параметара, које сада збирно представљамо.

Стопа уклањања течности је одређена са следећа два параметра:

  1. Укупни градијент притиска на мембрани

Величина ултрафилтрације је директно пропорционална укупном градијенту притиска на мембрани, тј. правом трансмембранском притиску.

Укупни градијент притиска обухвата хидростатске притиске у одељцима крви и дијализне течности, као и осмотски притисак којег испољавају протеини плазме (онкотски притисак).

  1. Својства (мембране) дијализатора

Различите мембране имају различите ултрафилтрацијске капацитете, па за исту величину ултрафилтрације захтевају врло различите градијенте притисака. При томе су најважнији параметри: врста и површина мембране.

Ефикасност уклањања супстанци дифузијом, одређена је са следећа 4 параметра:

  1. Проток крви  Qb

При стандардној хемодијализи, проток крви Qb, се обично подешава на 200-300 ml/min.  Повећавањем протока крви Qb, повећава се углавном клиренс малих молекула, као што су уреа (МТ 60) и креатинин (МТ 113). На уклањање крупнијих молекула, повећавање протока крви има незнатан ефекат.

  1. Проток дијализне течности  Qd

За оптимално уклањање штетних супстанци дијализом, проток дијализне течности Qd, треба да буде око два пута већи од протока крви. Већина апарата за ХД је подешена да оствари проток дијализне течности од 500 мл/мин, што је у пракси довољно за протоке крви до 300-350 мл.

  1. Градијент (разлика) у концентрацијама

Када су у питању супстанце мање молекулске масе, транспорти дифузијом су директно пропорционални концентрацијском градијенту на мембрани.

  1. Својства (мембране) дијализатора

Различити дијализатори имају различите перформансе. Када је у питању уклањање супстанци дифузијом, најважнија својства дијализатора су врста, дебљина и површина мембране. Геометрија протока у дијализатору и дистрибуција (распоређивање) протока, такође утичу на транспорте супстанци.

На крају, рецимо и то да уклањање супстанци конвекцијом зависи од величине (стопе) ултрафилтрације и пропусних карактеристика мембране. При стандардној ХД, конвективни клиренс супстанци је од мале важности.

.

DiaBloG – ST

.

Preporučujemo i ostale lekcije iz naše mini-Škole dijalize:

Школа дијализе (I део) – Функције бубрега

Школа дијализе (II део) – Транспортни принципи

Школа дијализе (IV део) – Дијализатор

Школа дијализе (V део) – Апарат за хемодијализу

Школа дијализе (VI) део – Дијализни третман

.     .    .

Школа дијализе (II део) – Транспортни принципи

Молекули  и  јони

Све материје у универзуму састоје се од атома, који су представници неког од 109 елемената.

Шематски, атом се састоји од позитивно наелектрисаног једра, које је окружено са облаком негативно наелектрисаних електрона. Атоми неког елемента увек имају исти позитиван набој у нуклеусу (једру).

Маса једног атома назива се његовом атомском тежином. Један обичан атом водоника, који се састоји од једра са једним позитивним наелектрисањем и једног електрона са негативним наелектрисањем, има атомску тежину 1.

Један обични атом угљеника, на таквој скали, има атомску тежину 12.

Када се два или више атома међусобно повежу један са другим, настала јединица се зове молекул.

Тежина молекула, тзв. молекулска тежина (МW), представља збир тежина атома од којих се састоји.

Пример: Израчунај молекулску тежину молекуле (H2O) воде, која се састоји од два атома водоника (H, атомска тежина 1) и једног атома кисеоника (О, атомска маса 16).  МW(H2O) = 2×1 + 1×16 = 18

Молекулска тежина молекуле се користи као мера њене величине. Примери за мале молекуле су вода (МW=18), угљен-диоксид (МW=44) и уреа (МW=60). Велике молекуле су, нпр. витамин Б12 (МW=1355) и протеини (МW од неколико хиљада).

Зависно од температуре, све супстанце могу постојати у неком од три агрегатна стања, која се називају чврсто, течно и гасовито агрегатно стање. Узмимо за пример воду: она може постојати као лед, течност и пара.

У чврстим материјама молекули су упаковани заједно у једну мрежу, вибрирају, али се не крећу. У течностима, молекули се котрљају један преко другог, крећу се, али не губе међусобни контакт – док у гасовима: тумбајући и сударајући се, молекули немају трајни међусобни контакт.

Неки атоми и молекуле имају снажну тенденцију да приме или изгубе наелектрисање, у виду електрона, и тако формирају јоне.

Натријум, нпр., се никада у природи не виђа као чисти натријум, већ просто егзистира као јон Натријума (Na+), тј. у облику у коме му недостаје један електрон.

Комбиновањем позитивно и негативно наелектрисаних јона, настају соли, чврсте материје, без икаквог спољног набоја. Добро познати пример кухињске соли (natrijum-hlorid, NaCl) која се састоји од истог броја позитивно наелектрисаних јона натријума (Na+) и негативно наелектрисаних јона хлора (Cl).

Раствори

Када мешањем различитих супстанци добијемо перфектно хомогену мешавину, за такав спој кажемо да је раствор.

Када се нпр. помешају  вода и алкохол, добије се изузетно хомогена течност. Молекули воде и алкохола се равномерно шире по посуди, обрћу се један око другог, а пропорционално су једнако заступљени у сваком делу раствора.

Чврста материја, нпр. глукоза, може бити растворена у течности, нпр. у води, и добићемо раствор.

Со такође, може бити растворена у води, и она се тада дели на своје јоне, који имају електрични набој.

Тако се раствор кухињске соли састоји од хомогене мешавине молекула воде, јона натријума и јона хлора.

Обзиром да је количина позитивно наелектрисаних јона (јона Натријума), једнака количини негативно наелектрисаних јона (јона Хлора), раствор у целини нема наелектрисање.  То је у сагласности са универзалним принципом електронеутралности: у раствору мора бити једнака количина позитивних и негативних електричних набоја.

Раствор кухињске соли има и једно специфично својство, он проводи електричну енергију, својство које се може искористити за одређивање концентрованости тог раствора.

Раствор се састоји од растварача и растворених супстанци. Разлика између њих је, у принципу, количинска: растварач је она материја која је у сувишку.

Уобичајено је да се под растворима подразумевају течни раствори. У овим случајевима растварач је течни медијум који отапа, као што је нпр. вода.

Растворене супстанце су материје отопљене у растварачу, нпр. јони као што је Na+ и Cl  или молекуле као што су уреа и глукоза.

Дијализна течност, крвна плазма и урин су примери комплексних раствора, где вода делује као растварач за мноштво растворених супстанци.

Дифузија

Молекули у смеси гасова или у раствору, никада не мирују, него вибрирају, крећу се и сударају. Ово унутрашље кретање, које не захтева спољну силу, а зависно је само од температуре, назива се Brownian–ово кретање (или равнотежа).

Као последица тога, одређена компонента раствора која је прекомерно заступљена у једном подручју, шириће се према осталим подручјима, где јој је концентрација мања.  Једноставно, све супстанце теже да се прошире што је могуће више у датом простору.

Тај феномен се назива дифузија.

У растворима, израз дифузија се користи да се опише физички процес при којем се растворене супстанце крећу из подручја где им је већа концентрација, ка подручју где им је мања концентрација, а све у циљу да се равномерно распореде, да постигну равнотежу.

Покретачка сила је концентрацијски градијент (разлика у концентрацијама), и кретање се одвија све док се не постигне равнотежа и док растворене супстанце не буду исто заступљене свугде.

Брзина дифундовања неке супстанце значајно зависи од величине те супстанце.  Веће молекуле се крећу спорије од мањих и зато је и њихова брзина дифундовања мања. Тако можемо рећи да, што је растворена супстанца већа, више ће јој требати времена да се уравнотежи у раствору.

Дифузија је веома брз процес када су у питању микронска растојања. Када су међутим, растојања већа од неколико центиметара, то је један изузетно спор процес и потребни су дани и дани,  да се концентрације изједначе.

Сада замислимо да смо формирали два одвојена одељка течности, одвојена мембраном која пропушта мале молекуле, а не пропушта велике молекуле.

Таква селективно пропустљива мембрана, означава се као полупропусна или семипермеабилна.

Даље, приметићемо да се мале супстанце крећу слободно између одељака, као да мембрана уопште не постоји.

То је процес аналоган дифузији у неком раствору без мембране, и покретачка сила је иста, разлика у концентрацијама.

Средње велике молекуле мембрана успорава, а велике супстанце остају мембраном одвојене од другог одељка.

Кретање растворених супстанци ће се одвијати све док се одржава разлика у концентрацијама. Ако се течност на страни где је мања концентрација супстанци стално мења са свежим раствором, кретање супстанци ће бити трајно.

Овај процес у којем супстанце дифундују кроз семипермеабилну мембрану, представља изворно значење речи dialysis(дијализа), иако се ова поједностављена дефиниција те речи, данас ретко користи.

Осмоза

Ако сада узмемо за пример два раствора, која су одвојена семипермеабилном мембраном.

Ти раствори су прилично различити, јер један садржи растворене супстанце, које су сувише велике да би прошле мембрану, а други садржи чисту воду.

Обзиром да растворене супстанце, због величине, не могу проћи кроз мембрану, једини начин да се ова два раствора уједначе, јесте да уместо супстанци, вода прође кроз мембрану.

Осмоза је назив физичког процеса у којем вода пролази кроз семипермеабилну мембрану из неког подручја где је већа количина (концентрација) воде (тј. мања концентрација супстанци), ка другом подручју где је мања концентрација воде (тј. већа концентрација супстанци).

Koнцентрација воде у раствору зависи од укупне концентрације растворених супстанци, независно од врсте супстанци.

Да би смо приказали укупну концентрацију честица и супстанци у неком раствору, користимо израз осмоларност (osmol/l).

Раствор од 2 mol/l глукозе има исту концетрацију воде као и раствор од 1 mol/l NaCl (1 ml/l Na+ + 1mol/l Cl). Оба ова раствора имају осмоларност од 2 osmol/l.

Висока осмоларност значи малу концентрацију воде.

Осмотски притисак је хидростатски притисак потребан да би се спречио помак воде изазван осмоларним градијентом: што је већа разлика у осмоларности, већи је и осмотски притисак.

Раствор који садржи више растворених супстанци него жива ћелија дефинише се као хипертонични; ако се ћелија налази у хипертоничном раствору вода ће излазити из ћелије у околину и ћелија ће се смањити.  Хипотонични раствор има мању концентрацију растворених супстанци него ћелија, па ћелија у хипотоничном окружењу набубри, а понекад се чак и распадне од прекомерног бубрења.

Када су концентрације растворених супстанци са обе стране мембране једнаке, такви раствори су изотонични.

Осмоза се може приметити кад год су растворене супстанце сувише крупне, па им је транспорт кроз мембрану онемогућен, или само успорен (тзв. непермеабилне супстанце).

Све док за воду постоји градијент (ступњевитост) концентрације преко мембране, вода ће тежити да се креће и да изједачи своју количину на обе стране мембране.

Ако имамо систем где растворене супстанце лако пролазе кроз мембрану, концентрације таквих раствора ће се пре изједначити дифузијом (кретањем супстанци), него кретањем воде.

Dodatak:  Реверзна осмоза (РО), је процес који се користи у пречишћавању воде, при чему је осмоза, може се рећи обрнута. Непрочишћена вода је одвојена од прочишћене, мембраном са веома малим порама. Хидростатски притисак који је већи од силе осмотског притиска, примењује се на страни са непречишћеном водом, тј. на страни са мањим садржајем воде. Тако  се вода под притиском усмерава са подручја где је има мање, на подручје где је има више, али је резултат тога високо-прочишћена вода.

Ултрафилтрација

Ултрафилтрација је физички процес при којем течност пролази кроз семипермеабилну мембрану.

Покретачка сила је градијент (разлика) притисака на странама мембране.

Градијент притиска се ствара на три различита начина.

Хидростатски притисак, створен нпр. пресом или пумпом, може бити или позитиван или негативан.

Позитиван хидростатски притисак (изнад атмосферског притиска), је потребан да би се течност потискивала кроз мембрану, а негативан хидростатски притисак (испод атмосферског притиска) је потребан да би се течност усисавала на другу страну мембране.

У хемодијализи, збир позитивног (на крвној страни) и негативног притиска (на страни дијализне течности), чини укупни градијент притиска на мембрани. Овај градијент притиска, назван трансмембраски притисак (ТМП), користи се за уклањање вишка воде.

Трећа варијанта је стварање осмотског притиска.

Додавањем супстанце веће молекулске масе, тј. непермеабилне супстанце, на ону страну мембране где се врши усисавање, течност ће се кретати из одељка који садржи већу концентрацију воде, ка одељку који има мању концентрацију воде.

Овај принцип се користи за уклањање течности у перитонеумској дијализи, а супстанца којом се ствара осмотски притисак је глукоза.

Конвекција

Претпоставимо да смо ставили коцку шећера у шољицу кафе, па ће се она растворити на дну шољице. Ако ми сада чекамо да се шећер равномерно распростре у шољици, само дифузијом, кафа ће нам се сигурно охладити.

Знамо да, ако хоћемо да брзо постигнемо равномерну распрострањеност шећера у шољи кафе, морамо (кафеном) кашичицом да промешамо кафу, да правимо кретање течности, у виду турбуленције (ковитлања).

У овом случају молекули шећера се не крећу дифузијом; они се крећу са кретањем растварача, тј. воде.

Исти феномен се виђа када неки раствор пролази кроз семипермеабилну мембрану, он повлачи собом и растворене супстанце.

Конвекција је израз који се користи за описивање кретања растворених супстанци кроз мембрану, које је изазвано кретањем растварача. Отуда израз „solvent drag“ („тегљење растварачем“).

Транспорт растворених супстанци директно је повезан са транспортом растварача, а брзина транспортовања растварача зависи од градијента притиска.

За уклањање веома крупних супстанци, за које ће брзина дифузије бити изузетно мала, конвекција је једини механизам транспорта.

Зависно од величине пора на мембрани, растворене супстанце различитих молекулских тежина ће пролазити у различитој количини.

Мале супстанце, за које мембрана није препрека, пролазиће истом брзином кроз мембрану као и течност, и њихова ће концентрација бити иста као и у првом раствору.

Међутим, за веће супстанце, мембрана ће деловати као решето (сито), и неке крупније супстанце уопште неће проћи кроз мембрану.

Расподела телесне воде

Иако људско тело изгледа прилично чврсто, у њему је више од 50% садржаја вода.

У организму просечног мушкарца, који је 175 цм висок и има 70 кг, има 42 кг воде, тј. око 60% од телесне тежине. Главни чинилац који утиче на садржај воде у људском организму јесте количина масног ткива, тј. поткожне масти.

Обзиром да масно ткиво садржи само око 20% воде, гојазне особе имају пропорционално мање воде. Због тога организам жене садржи мање воде, него организам мушкарца.

Супротно томе, организам детета садржи више воде, него организам одраслих.

Садржаји воде у људском организму се крећу од 80%, у мршавих младих особа, до 45% у гојазних жена.

Целокупна телесна течност се састоји од воде (растварача), са раствореним супстанцама, као што су соли и протеини.

Главне врсте телесних течности су:

  • интраћелијска (интрацелуларна) течност, тј. цитоплазма у свим ћелијама организма.
  • међућелијска (интерстицијумска) течност, или „ткивна течност“, тo јe течни медиј који окружује ћелије.
  • крвна плазма, тј. течност која испуњава кардиоваскуларни систем, делује као главни транспортни пут у организму.

Остале ванћелијске течности су нпр. лимфа (крвна плазма изван крвних судова) и церебро-спинална течност (течност унутар опни које окружују мозак и кичмену мождину).

Тако, укупна телесна течност у људском организму се може поделити на:

  • ћелијски (интрацелуларни) одељак, који садржи интраћелијску течност. Она чини 40% укупне телесне тежине (тј. 2/3 укупне телесне течности).
  • ванћелијски (екстрацелуларни) одељак, који садржи изванћелијску течност. Она чини 20% укупне телесне тежине (тј. 1/3 укупне телесне воде).

Екстраћелијски одељак се даље може поделити на:

  • интерстицијумски (међућелијски) одељак, који садржи међућелијску течност. Она која чини 15% укупне телесне тежине (тј. ¼ укупне телесне течности).
  • интраваскуларни (крвносудовни) одељак, који садржи људску плазму. Крвна плазма чини 5% укупне телесне тежине (тј. 1/12 укупне телесне воде).

Сви ови одељци телесних течности одвојени су међусобно полупропусним (семипермеабилним) мембранама.

У људском организму постоји стална размена воде и растворених честица између ових одељака.

То су размене које су последица природних транспортних механизама, дифузије и осмозе, а све у циљу да се успостави одређена равнотежа у унутрашњој средини.

Електролити и запремина течности

Растворене соли, тј. електролити, чине више од 95% свих осмотски активних супстанци, у телесним течностима.

Зато су електролити од великог значаја у одржавању запремина различитих одељака телесне течности.

Натријум, Na+, је најважнији електролит у одржавању осмотског притиска и волумена екстрацелуларног (ванћелијског) одељка телесне течности.

Свака промена у концентрацији Na+, аутоматски доводи до промене осмотског притиска у одељку екстрацелуларне течности, а то онда доводи и до промене запремина, па настаје или хиповолемија (смањење волумена крви), или хиперволемија (повећање волумена крви).

Калијум, К+, је најважнији електролит у одржавању осмотског притиска и волумена у интрацелуларном (унутарћелијском) одељку телесне течности. Промене у количини калијума неће утицати на запремину ћелије, али ће, уместо тога, довести до поремећаја у функционисању  те ћелије.

Скоро ¾ укупне количине калијума у људском организму смештено је у мишићним ћелијама.

Ако дође до поремећаја у интраћелијској концентрацији калијума, то може имати веома озбиљне последице, као што је срчана аритмија и парализа мишића.

Обзиром да је ћелијска мембрана семипермеабилна (полупропусна), мали јони, какви су јони натријума и калијума, могу лако проћи кроз мембрану. Како је онда могуће да се одржавају различите концентрације натријума и калијума унутар и изван ћелије?

Одговор је у чињеници да постоји један механизам активног (а не пасивног) транспорта, у ћелији, који одржава ову неравнотежу (дизеквилибријум), константно пумајући Na+ изван ћелије, а К+ унутар ћелије.

Овај механизам, назван  Na++ пумпа, се ензимски активира и при раду троши енергију.

У екстраћелијској течности, постоји размена воде и електролита између интерстицијумског и интраваскуларног одељка.

Главна разлика у садржајима ова два одељка, јесте постојање протеина у плазми.

Протеини плазме не могу проћи кроз капиларну мембрану и због тога делују као осмотски активне супстанце, задржавају течност у крвним судовима.

Осмотски притисак остварен протеинима плазме, назива се онкотски притисак, и износи око 20-30 mmHg.

Заједно са натријумом, протеини плазме су главни носиоци запремине плазме, тј. интраваскуларног волумена.

Дизеквилибријум (Неравнотежа)

Ако замислите да је једна стаклена посуда (пехар) подељена полупропусном (семипермеабилном) мембраном на два идентична дела и напуњена водом, показаћемо вам како настаје дизеквилибријум (стање поремећаја равнотеже), а затим и начин на који се равнотежа поново успоставља.

  1. Када воду додајемо у леви одељак, формира се градијент хидростатског притиска. Обзиром да је мембрана пропусна за воду, вода ће се кретати са леве на десну страну мембране и доћи ће до изједначења хидростатских притисака, односно престанка градијента. Равнотежа је успостављена.
  2. Када у растварач (воду) у левом одељку додамо извесну количину малих честица, које могу пролазити кроз мембрану, ствара се концентрацијски градијент. Обзиром да је мембрана семипермеабилна, ове мале супстанце ће пролазити (дифундовати) кроз мембрану, у десни одељак, и доћи ће до изједначавања концентрација. Равнотежа је успостављена.
  3. Када се у растварач (воду) у левом одељку додају извесне количине крупнијих честица, које не могу проћи кроз мембрану, створио се осмотски градијент. Обзиром да ове супстанце не могу проћи кроз мембрану, доћи ће, уместо тога, до кретања воде из десног у леви одељак, и осмотски притисци ће се изједначити. Равнотежа је опет успостављена.

У природи је људског организма да тежи равнотежи, а главни орган за одржавање равнотеже у људском организму јесте бубрег. Када он не функционише, мора се обезбедити адекватан начин постизања равнотеже у организму, лечењем са методама за надокнадну бубрежних функција.

.

DiaBloG – ST

.

Preporučujemo i ostale lekcije iz naše mini-Škole dijalize:

Школа дијализе (I део) – Функције бубрега

Школа дијализе (III део) – Принципи дијализе

Школа дијализе (IV део) – Дијализатор

Школа дијализе (V део) – Апарат за хемодијализу

Школа дијализе (VI) део – Дијализни третман

.     .    .